사인함수 (Sine Function) sinx는 다음과 같이 정의합니다.
sinx=∞∑n=0(−1)n(2n+1)!x2n+1n!은 팩토리얼 표기입니다.
멱급수 수렴반지름 이용
연속 하는 것도 보일 것
삼각함수의 덧셈정리위의 정의에서 얻을 수 있는 삼각함수의 덧셈정리 입니다. 사인함수와 코사인함수를 기하적으로 정의한다면 덧셈정리 -> 미분 순서로 공부하게 되고, 거듭제곱급수로 정의하게 되면 미분 -> 덧셈정리 순서로 공부하게 됩니다.
모든 실수 x, y에 대해 sin(x+y)=sinxcosy+cosxsiny
sinz=z∞∏n=1(1−z2π2n2)
∞∏n=1(1−z2π2n2)가 수렴하는걸 우선 보이기
삼각함수 계열 함수 모음입니다.